Masters in Civil Engineering (General Option) | NYU Tandon School of Engineering

Masters in Civil Engineering (General Option)

To receive your Master of Science in Civil Engineering (General Option) you must fulfill the following requirements. 

  • Four core courses (12 credits)
  • Two courses in any 3 concentration areas (18 credits)


City skyline

Core Courses

3 Credits Instrumentation, Monitoring and Condition Assessment of Civil Infrastructure CE-GY 6073
This course covers: A systematic approach to planning and executing instrumentation, monitoring and condition assessment programs; strain measurements; civil engineering sensors (static, dynamic, optical); environmental measurements; mechatronic sensors; signal conditioning, information measurements and error analysis; business aspects; advanced-measurement systems.
Prerequisite: Graduate Standing
3 Credits Materials for Civil Engineers CE-GY 6023
The course covers: Materials composition and production of cementitious materials; polymeric composites and metals; mechanical properties subject to short-term and long-term loads, impact and fire; fatigue and fracture; transport properties, chemical degradation and long-term durability.
Prerequisite: Graduate Status.
3 Credits Environmental Impact Assessment CE-GY 7673
The course examines legal and technical requirements in preparing environmental-impact statements. Considerations include legal and technical requirements, the procedure and the interdisciplinary nature of the analysis. Topics include overall impact evaluation, categories of impacts, problem definition, quantification of impact, methods used in analysis, field evaluations, mitigations, hearing procedures and management. Practical examples and case studies are used.
Prerequisite: Graduate Standing
3 Credits Urban Infrastructure Systems Management CE-GY 7843
This course provides a descriptive overview of key infrastructure systems and technologies that must be managed, operated and maintained. Systems treated include buildings and structures, water supply, solid and liquid waste handling and disposal, transportation, power, communications and information systems, health and hospitals, police and preprotection. The course explores the financial, political, administrative, legal and institutional settings of these systems and technologies. A portion of the course features distinguished guest lecturers who are experts in some of the systems and technologies included.
Prerequisite: Graduate Standing
3 Credits Project Management for Construction CE-GY 8253
The course covers topics specific to developing and coordinating large projects, including organizational structures, management functions, pricing and estimating project costs, bidding and contracting, risk allocation, scheduling, time and cost control, labor relations, quality management and project life-cycle activities.
3 Credits Risk Analysis CE-GY 8283
In this course, students investigate the ever-rising importance of risk analysis in project management. Topics include: analysis of qualitative and quantitative risk; techniques in probability analysis, sensitivity analysis, simulation of risk and utility theory; and computational methods for calculating risk. Students are exposed to real-world problems through case investigations.
Prerequisite: Graduate Standing


Structural Concentration

3 Credits Theory of Structural Analysis and Design CE-GY 6013
The course discusses theories of structural analysis and their relationship to design. Topics: Classical structural mechanics, matrix procedures and numerical methods in problem-solving; and analysis of statically indeterminate beams, frames and trusses using force and displacement methods. Also considered are elastic supports, movement of supports and temperature effects.
Prerequisite: undergraduate structural analysis.
3 Credits Finite Element Methods CE-GY 6163
Students study the basic theory of the finite element method and learn how to apply it using widely used engineering programs. The course emphasizes developing finite element models and executing the analysis. Students learn to recognize modeling errors and inconsistencies that could lead to either inaccurate or invalid results.
3 Credits Bridge Engineering CE-GY 6063
The course covers types of bridges; geometric design of bridges; construction materials and techniques; simplified bridge analysis; special problems in the design of steel and reinforced-concrete bridges; bridge inspection policies; bridge rehabilitation procedures; bridge management systems; and the effects of wind and earthquakes on long-span bridges.
Prerequisites: undergraduate structural analysis and steel design.
CE-GY 6133 Please refer to the bulletin for more information
3 Credits Steel Structures CE-GY 6143
This course explores compression members; elastic and inelastic buckling of columns and plates; lateral support of beams; torsion of open and closed sections; warping; lateral torsional buckling of beams; and bi-axial bending. Other topics include: Plate girders, including stability of webs and flanges; combined bending and axial load; instability analysis; and design of rigid and semi-rigid mechanisms of continuous beams and rigid frames. Both elastic and plastic design criteria are discussed.
Prerequisite: Undergraduate steel design.
3 Credits Concrete Structures CE-GY 6183
The course covers design principles and construction methods for reinforced and pre-stressed concrete structural elements; response of members subject to axial loading, shear and flexure; design of columns, deep beams and shear walls; design and detailing for connection regions; design of pre-tensioned and post-tensioned beams and slabs; and the effect of short-term and long-term deformations.
Prerequisite: Graduate status.
3 Credits Wind and Earthquake Engineering CE-GY 6193
The course examines characteristics of wind and earthquake loads; atmospheric motions and boundary layer theory; response of structures to wind forces; code treatments of wind loads on structures; calculation of lateral forces from seismic events; lateral force-resisting systems; diaphragms and center of rigidity; response spectrum and time-history; ductility; concrete and steel frame structures; braced frames; shear walls; dual systems; story drift; detailing requirements.
Prerequisite: Graduate status.


Geotechnical Concentration

3 Credits Ground Improvement CE-GY 8423
The course discusses foundation engineering practice, foundation rehabilitation, and emerging ground- improvement technologies. Topics covered are the selection, design and analysis of ground-improvement techniques for different foundation problems, as well as the construction, monitoring and performance evaluation of such solutions.
Prerequisites: undergraduate soil mechanics and foundations, CE-UY 4173 or equivalent.
3 Credits Advanced Foundation Design CE-GY 8663
Topics covered: Advanced analysis of foundations, shallow foundations, bearing capacity, settlement, deep foundations, axial and lateral loading of piles, wave equation analysis, drilled piers, design and construction issues, and case histories.
Prerequisites: undergraduate soil mechanics and foundations, CE-UY 4173 or equivalent.
3 Credits Excavation Support Systems CE-GY 8673
The course covers design and construction methodologies for excavation support systems, including soldier pile, sheet pile, and secant pile wall systems. Both traditional limit-equilibrium and modern elastoplastic analysis methods will be presented. Students will get the opportunity to utilize industry software to design excavation support systems. Last, for the 1st time this year, students will have the opportunity to also experience excavation support systems in virtual or augmented reality.
Prerequisites: undergraduate Geotechnical Engineering.
CE-GY 8403 Please refer to the bulletin for more information
3 Credits Environmental Geotechnology CE-GY 8493
The course covers: Clay mineralogy; soil-water interaction processes; chemical transport through soils; hydraulic conductivity, diffusion and attenuation mechanisms; water-disposal systems; design of land-fills, seepage barriers and cut-off walls; geo-environmental site characterization techniques; and soil-remediation techniques.
Prerequisite: undergraduate soil mechanics, CE-UY 3153 or equivalent.


Environmental Concentration

3 Credits Hydrology CE-GY 7223
This course covers: Hydraulic cycle; meteorological considerations; analysis of precipitation, runoff, unit hydrographs, flood routing and reservoir storage; principles of groundwater hydrology; and an introduction to frequency analysis of floods and droughts.
Prerequisite: Graduate Standing
3 Credits Groundwater Hydrology and Pollution CE-GY 7233
This course looks at the characteristics of confined and unconfined flow of water through porous media; groundwater and well hydraulics; quality of groundwater; environmental influences; groundwater pollution; management aspects of groundwater and groundwater modeling.
Prerequisites: CE-UY 2214 (Fluid Mechanics) or equivalent or instructor’s permission.
3 Credits Environmental Chemistry & Microbiology CE-GY 7373
The course introduces the chemistry and microbiology of polluted and natural waters, including applications of principles developed.
3 Credits Water & Wastewater Treatment CE-GY 7423
The course covers the physical, chemical and biological principles of process design and treatment of water and wastewater. Topics include aeration, filtration, softening, chemical treatment, coagulation, occulation, desalination, and taste and odor control.
Co-requisite: CE-GY 7373.
3 Credits Modeling Fate and Transport of Surface Water Pollution CE-GY 7473
The course covers dispersal and decay of contaminants introduced into lakes, streams, estuaries and oceans, and the effects of pollutants on chemical quality and ecology of receiving waters.
Prerequisite: Graduate Standing
3 Credits Solid Waste Management CE-GY 7703
The course covers engineering aspects of solid waste collection, transport and disposal, including incineration, sanitary landfill, composting, recovery and reutilization. Also covered is the economic evaluation of factors affecting selection of disposal methods.
Prerequisite: Graduate Standing
3 Credits Environmental Systems Management CE-GY 7753
This course provides an overview of information technologies as applied to the remote sensing of environmental infrastructure systems, and includes the development of infrastructure system databases to assist complex decision-making on environmental infrastructures.
Prerequisite: Graduate Standing


Construction Management and Engineering Concentration

3 Credits Construction Modeling Techniques CE-GY 8243
This course deals with various construction-modeling techniques, including the development of two-dimensional (2D) and three-dimensional (3D) design documents. Students are introduced to the development of building information models (BIM) and their associated databases, using state-of-the-art design and management systems.
Prerequisite: Graduate Standing
3 Credits Construction Cost Estimating CE-GY 8263
This course covers estimating and cost control from the viewpoint of contractors and construction engineers; details of estimating with emphasis on labor, materials, equipment and overhead.
Prerequisite: Graduate Standing
3 Credits Contracts and Specifications CE-GY 8273
This course covers principles of contract law as applied to the construction industry and legal problems in preparing and administering construction contracts.
Prerequisite: Graduate Standing
3 Credits Construction Operations Analysis CE-GY 8293
This course examines the evaluation and model development of productivity, safety, quality and materials handling in construction operations. Topics include the principal methods for analysis and pre-planning work activities, including the use of three-dimensional (3D) building information models (BIM), four-dimensional (4D) and fully integrated and automated project processes (FIAPP), logistics animation, Monte Carlo scheduling, stochastic simulation and queuing theory. Students are introduced to the use of financial models for task, activity, project and program analyses.
Prerequisite: CE-GY 8243 or Construction Management Program Director’s approval.
CE-GY 8303 Please refer to the bulletin for more information
3 Credits Engineering for Construction I: Methods and Technologies CE-GY 8313
This course covers planning, design and equipment for new construction and for infrastructure rehabilitation; engineering fundamentals of earth moving; soil stabilization and compaction; methods for tunneling through rock and earth and rock blasting; foundation grouting; piles and pile driving equipment; dewatering systems and pumping equipment; factors affecting the selection of construction equipment; review of conventional construction equipment; and trends in robotics.
Prerequisite: Graduate Standing
CE-GY 8323 Please refer to the bulletin for more information
3 Credits Marketing for Construction Management and Engineering Services Mktg for Construction Management & Engineering Serv CE-GY 8333
This course focuses on the process of procurement of construction management and engineering services. It incorporates a hands-on approach to current industry practices. The materials address the following: identifying leads; researching and evaluating competition through various sources; reviewing and critiquing requests for qualifications (RFQ) and requests for proposals (RFP) and responses; developing a marketing resume; developing project profiles; evaluating presentations; and selecting successful candidates. Students will prepare their own proposals and presentations.
Prerequisite: Graduate Standing
3 Credits Construction Site Safety CE-GY 8343
This course is for individuals who are interested in construction safety and the realities of a construction project and for those seeking certification as a Site Safety Manager from the New York City (NYC) Department of Buildings (DOB). Students learn about the comprehensive Subchapter 19 of the New York City Building Code and the City's Rules and Regulations on construction site safety projects. The course curriculum includes the content approved by the NYC DOB to prepare students for the Site Safety Manager examination.
Prerequisite: Graduate Standing
3 Credits Construction Scheduling CE-GY 8353
Students will be instructed in advanced Critical Path Method (CPM) construction scheduling techniques including the use of Primavera Project Planner v. 7.0. The course will cover Precedence Diagramming Method (PDM), project resources and resource leveling, schedule updating, schedule impacts of date constraints, project time and cost trade-offs, activity duration estimating, work breakdown structures, differing scheduling requirements on different types of construction projects and an overview of construction contract scheduling specifications. An introduction to other scheduling methodologies and the use of schedules in construction claims will also be addressed.
Prerequisite: Graduate Standing
CE-GY 8363 Please refer to the bulletin for more information
3 Credits Construction Accounting and Finance CE-GY 8373
This course introduces students to the uses of accounting and financial analysis in decision making in a construction and development environment. The course will demonstrate to students how the principles of accounting and financial management can be adapted for, and used in the management of construction companies and project management. Students will review accounting concepts, rules, regulations and reporting requirements as they apply to construction and development, and they will use and create accounting and financial models.


Highway and Traffic Engineering Concentration

3 Credits Forecasting Urban Travel Demand TR-GY 6113
The purpose of this course is to study methods and models used in estimating and forecasting person travel in urban areas. The objective is to understand the fundamental relationships between land use, transportation level of service and travel demand, and to apply methods and state-of-the-practice models for predicting person travel on the transportation system.
Prerequisite/Corequisite: TR-GY 6013 or permission of instructor.
3 Credits Intelligent Transportation Systems and Their Applications TR-GY 6223
This course introduces the concepts and applications of Intelligent Transportation Systems (ITS) and its growing role in the management of transportation systems. The course stresses the role of ITS as national policy, as specified in major transportation funding legislation – ISTEA, TEA21 and SAFETY-LU. A systems engineering approach to overall development of ITS technologies is stressed. Major components of ITS are discussed, and examples of their application treated. Coordination and integration of ITS components are treated.
Prerequisite: Graduate status or permission of instructor.
3 Credits Transportation & Traffic Concepts, Characteristics & Studies TR-GY 6333
The course covers basic concepts in transportation and traffic engineering, including: volume, demand, and capacity; traffic stream parameters and their meaning; transportation modes and modal characteristics. The impact of traveler and vehicle characteristics on traffic flow and on other modes is presented and discussed. The importance of data collection is emphasized with sample studies, such as volume, speed and travel time, and safety. Capacity and level of service analysis for uninterrupted flow facilities, including freeways, multilane highways and two-lane highways is demonstrated using methodologies of the 2010 Highway Capacity Manual.
Prerequisite: Graduate standing or permission of instructor
3 Credits Traffic Operations & Control TR-GY 6343
The course would focus heavily on signalization, with an introduction to simulation and signal timing tools. The course would cover warrants, timing pretimed signals, understanding actuated controllers and their settings, as well as detector types placement.
Prerequisites: Graduate standing or department consent
3 Credits Transportation & Traffic Project TR-GY 6403
This is a capstone course involving individual and/or group projects that include several different aspects of transportation planning and engineering. The project will be different each year, and focus on a problem of current interest and importance.
Prerequisites: TR-GY 6113, TR-GY 6333, TR-GY 6343 or permission of instructor
3 Credits Multimodal Transportation Safety TR-GY 7033
Technology, legislation and market forces have contributed to improved transportation safety for decades. But one must consider which metrics are most relevant for which modes, the role of demographics and traffic levels and other factors when analyzing and predicting safety trends. The course pays attention to a systems view, to metrics by mode and to both standard field and statistical analyses. Consistent with current priorities, the course addresses security as well as safety issues.
Prerequisite: Graduate status or permission of instructor.
TR-GY 7123 Please refer to the bulletin for more information
3 Credits Urban Public Transportation Systems TR-GY 7133
This course provides a thorough understanding of policy, planning, operational and technical issues that affect urban public transportation. It includes the historical development of cites and the rise of urban transport. Also covered are the characteristics of various urban transportation modes (their specific operating and infrastructure characteristics), as well as key elements that are critical to service provision, such as service planning, scheduling, fare collection, communication and signaling, station design and customer service. The course offers a broad perspective on regional planning, capital programming and policy matters. Special focus will be on emerging technologies and their practical applications.
Prerequisite: Graduate status or permission of instructor.
TR-GY 7233 Please refer to the bulletin for more information
TR-GY 7243 Please refer to the bulletin for more information
TR-GY 7323 Please refer to the bulletin for more information
3 Credits Data-driven Mobility Modeling & Simulation TR-GY 7353
The goal of this course is to provide students with the tools and methods to understand basics of traffic flow theory, modeling and simulation. The emphasis will be on the use of real-world data to supplement the understanding of the theory behind theoretical models. Small-scale models will be developed in R or Python then tested and validated against real-world data. The use of some of the well-known microscopic, mesoscopic, and agent-based transportation / traffic modeling and simulation software tools such as SUMO and MATSIM will also be introduced using a hands-on approach with real-world transportation networks.
Prerequisites: TR-GY 6333 and TR-GY 6343 or equivalents; or permission of advisor
TR-GY 8021 Please refer to the bulletin for more information


Urban Infrastructure Systems Concentration

CE-GY 7813 Please refer to the bulletin for more information
3 Credits Urban Infrastructure Systems Management CE-GY 7843
This course provides a descriptive overview of key infrastructure systems and technologies that must be managed, operated and maintained. Systems treated include buildings and structures, water supply, solid and liquid waste handling and disposal, transportation, power, communications and information systems, health and hospitals, police and preprotection. The course explores the financial, political, administrative, legal and institutional settings of these systems and technologies. A portion of the course features distinguished guest lecturers who are experts in some of the systems and technologies included.
Prerequisite: Graduate Standing
3 Credits Infrastructure Asset Management CE-GY 7853
This course reviews state-of-the-art performance monitoring and system condition assessment methodologies as part of infrastructure management systems. Emphasis is on information technologies as applied to remote sensing and database development for urban systems management. Infrastructure tools, such as GIS and dedicated databases for condition assessment are represented in a laboratory environment. Invited experts participate in such areas as transportation, water distribution and utilities.
Prerequisite: Graduate Standing
3 Credits Environmental Systems Management CE-GY 7753
This course provides an overview of information technologies as applied to the remote sensing of environmental infrastructure systems, and includes the development of infrastructure system databases to assist complex decision-making on environmental infrastructures.
Prerequisite: Graduate Standing
3 Credits Construction and the Law CE-GY 8713
Construction industry executives need not be legal experts, but they must be aware of the legal issues affecting their industry and their bottom line. This course uses the case study method to lead students through the concepts of design and construction law. The course focuses on the interface of legal, business and technical issues and their resolution. It includes the design and organization of construction documents; the legal aspects of bidding, subcontracting, bonds, insurance, mechanic’s liens, etc; and the implication of delays, changes and charged conditions. Alternative dispute resolution (ADR) methods are introduced.
Prerequisite: Admission to the Exec 21 Program or permission of a Construction Management Program Director.